Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Neurosci ; 17: 1243232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027491

RESUMO

Visceral pain is a complex and heterogeneous pain condition that is often associated with pain-related negative emotional states, including anxiety and depression, and can exert serious effects on a patient's physical and mental health. According to modeling stimulation protocols, the current animal models of visceral pain mainly include the mechanical dilatation model, the ischemic model, and the inflammatory model. Acupuncture can exert analgesic effects by integrating and interacting input signals from acupuncture points and the sites of pain in the central nervous system. The brain nuclei involved in regulating visceral pain mainly include the nucleus of the solitary tract, parabrachial nucleus (PBN), locus coeruleus (LC), rostral ventromedial medulla (RVM), anterior cingulate cortex (ACC), paraventricular nucleus (PVN), and the amygdala. The neural circuits involved are PBN-amygdala, LC-RVM, amygdala-insula, ACC-amygdala, claustrum-ACC, bed nucleus of the stria terminalis-PVN and the PVN-ventral lateral septum circuit. Signals generated by acupuncture can modulate the central structures and interconnected neural circuits of multiple brain regions, including the medulla oblongata, cerebral cortex, thalamus, and hypothalamus. This analgesic process also involves the participation of various neurotransmitters and/or receptors, such as 5-hydroxytryptamine, glutamate, and enkephalin. In addition, acupuncture can regulate visceral pain by influencing functional connections between different brain regions and regulating glucose metabolism. However, there are still some limitations in the research efforts focusing on the specific brain mechanisms associated with the effects of acupuncture on the alleviation of visceral pain. Further animal experiments and clinical studies are now needed to improve our understanding of this area.

2.
Small ; : e2308806, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010127

RESUMO

Developing high-performance infrared (IR) nonlinear optical (NLO) materials is urgent but challenging due to the competition between NLO coefficient and bandgap in one compound. Herein, by coupling NLO-active [BS3 ] planar units and halide-centered polycations, six new metal thioborate halides ABa3 B2 S6 X (A = Rb, Cs; X = Cl, Br, I) composed of zero-dimensional [XBam Rbn /Csn ] polycations and [BS3 ] units, belonging to a new A I B 3 II C 2 III Q 6 VI X VIII ${\mathrm{A}}^{\mathrm{I}}{\mathrm{B}}_{3}^{\mathrm{II}}{\mathrm{C}}_{2}^{\mathrm{III}}{\mathrm{Q}}_{6}^{\mathrm{VI}}{\mathrm{X}}^{\mathrm{VIII}}$ family, are rationally designed and fabricated. The compounds show an interesting structural transition from Pbcn (ABa3 B2 S6 Cl) to Cmc21 (ABa3 B2 S6 Br and ABa3 B2 S6 I) driven by the clamping effect of polycationic frameworks. ABa3 B2 S6 Br and ABa3 B2 S6 I are the first series metal thioborate halide IR NLO materials, and the introduction of [BS3 ] unit effectively widens the bandgap of planar unit-constructed chalcogenides. ABa3 B2 S6 Br and ABa3 B2 S6 I, exhibiting wide bandgaps (3.55-3.60 eV), high laser-induced damage thresholds (≈ 6 × AgGaS2 ), and strong SHG effects (0.5-0.6 × AgGaS2 ) with phase-matching behaviors, are the promising IR NLO candidates for high-power laser applications. The results enrich the chemical and structural diversity of boron chemistry and give some insights into the design of new IR NLO materials with planar units.

3.
Dalton Trans ; 52(44): 16113-16117, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37899722

RESUMO

The first alkaline-earth metal thioborate-thiophosphate Ba3(BS3)(PS4) was designed from Ba3(BO3)(PO4) by S-O substitution and fabricated experimentally. The [BS3] pseudo-layers formed in the structure contribute to the strong optical anisotropy and a large birefringence of ∼0.11 at 1064 nm. The results enrich the structural and chemical diversity of chalcogenides.

4.
Nat Commun ; 14(1): 6650, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863920

RESUMO

Kesterite Cu2ZnSn(S, Se)4 is considered one of the most competitive photovoltaic materials due to its earth-abundant and nontoxic constituent elements, environmental friendliness, and high stability. However, the preparation of high-quality Kesterite absorbers for photovoltaics is still challenging for the uncontrollability and complexity of selenization reactions between metal element precursors and selenium. In this study, we propose a solid-liquid/solid-gas (solid precursor and liquid/vapor Se) synergistic reaction strategy to precisely control the selenization process. By pre-depositing excess liquid selenium, we provide the high chemical potential of selenium to facilitate the direct and rapid formation of the Kesterite phase. The further optimization of selenium condensation and subsequent volatilization enables the efficient removal of organic compounds and thus improves charge transport in the absorber film. As a result, we achieve high-performance Kesterite solar cells with total-area efficiency of 13.6% (certified at 13.44%) and 1.09 cm2-area efficiency of 12.0% (certified at 12.1%).

5.
Dalton Trans ; 52(33): 11401-11406, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37578303

RESUMO

Two new alkaline metal thioboratephosphates, RbB3P2S10 and CsB3P2S10, have been designed and fabricated by the flux method. The two compounds are composed of alkali metal polyhedral and [B6P4S20] T3-supertetrahedral units, and crystallize in I41/a and R3̄c space groups, respectively. The results enrich the chemical diversity of chalcogenides, and give insights for the exploration of new functional materials in thioboratephosphates.

6.
MAGMA ; 36(5): 797-813, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36964797

RESUMO

OBJECTIVE: Maps of B0 field inhomogeneities are often used to improve MRI image quality, even in a retrospective fashion. These field inhomogeneities depend on the exact head position within the static field but acquiring field maps (FM) at every position is time consuming. Here we propose a forward simulation strategy to obtain B0 predictions at different head-positions. METHODS: FM were predicted by combining (1) a multi-class tissue model for estimation of tissue-induced fields, (2) a linear k-space model for capturing gradient imperfections, (3) a dipole estimation for quantifying lower-body perturbing fields (4) and a position-dependent tissue mask to model FM alterations caused by large motion effects. The performance of the combined simulation strategy was compared with an approach based on a rigid body transformation of the FM measured in the reference position to the new position. RESULTS: The transformed FM provided inconsistent results for large head movements (> 5° rotation, approximately), while the simulation strategy had a superior prediction accuracy for all positions. The simulated FM was used to optimize B0 shims with up to 22.2% improvement with respect to the transformed FM approach. CONCLUSION: The proposed simulation strategy is able to predict movement-induced B0 field inhomogeneities yielding more precise estimates of the ground truth field homogeneity than the transformed FM.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
7.
Mater Horiz ; 10(2): 619-624, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36514894

RESUMO

Infrared nonlinear optical (IR-NLO) materials with wide band gaps are important for generating high-power laser light for modern laser technologies. Herein, a wide band gap IR-NLO material, Rb2CdSi4S10, was rationally designed and fabricated by introducing a NLO-active [Si4S10] T2-supertetrahedron (ST) into the quaternary sulfide system. The Rb2CdSi4S10 shows the largest band gap (4.23 eV) among the quaternary chalcogenide IR-NLO materials reported, which results in a high laser-induced damage threshold (LIDT) of ∼5 × AgGaS2 (AGS) at 1064 nm. At the same time, it has a moderate second-harmonic generation (SHG) response (0.6 × AGS). Based on statistical analyses, the Rb2CdSi4S10 is the first compound to be discovered in the AI2BIICIV4QVI10 family, and also the first Si-rich sulfide IR-NLO material with a [Si4S10] T2-supertetrahedra. The results indicate that Rb2CdSi4S10 is a promising new IR-NLO material, and the NLO-active [Si4S10] T2-ST unit could be used for the exploration of IR-NLO material with excellent performances.

8.
J Am Chem Soc ; 144(48): 21916-21925, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36399047

RESUMO

Large second-harmonic generation (SHG) response and broad band gap are two important and competitive parameters. It is difficult to balance them out in one material. In this work, by coupling alkali earth metal (AEM) octahedra with large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap and nonlinear optical (NLO)-active tetrahedra units, nine noncentrosymmetric (NCS) compounds, belonging to a new quaternary chalcogenide family AIB3IIC3IIIQ8VI with unique windmill-like [Mg3M3IIIQ24] (MIII = Al, Ga; Q = S, Se) units constructed by alternated [MgQ6] octahedra and [MIIIQ4] tetrahedra, are rationally designed and fabricated. The compounds show a stable structural framework but adjustable optical properties. Among them, NaMg3Ga3Se8 shows a large SHG response (∼1 × AgGaS2 (AGS)), wide band gap (in selenide) (2.77 eV), high laser-induced damage threshold (LIDT) (∼2.3 × AGS), and suitable birefringence (0.079@546 nm). It should be a potential candidate for infrared (IR) nonlinear optical (NLO) materials. The results enrich the chemical diversity of chalcogenides and open an avenue for the development of new IR NLO materials through the octahedra and tetrahedra coupled strategy.

9.
Magn Reson Med ; 88(5): 2267-2276, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35754142

RESUMO

PURPOSE: To develop improved tissue masks for QSM. METHODS: Masks including voxels at the brain surface were automatically generated from the magnitude alone (MM) or combined with test functions from the first (PG) or second (PB) derivative of the sign of the wrapped phase. Phase images at 3T and 9.4T were simulated at different TEs and used to generate a mask, PItoh , with between-voxel phase differences less than π. MM, PG, and PB were compared with PItoh . QSM were generated from 3D multi-echo gradient-echo data acquired at 9.4T (21 subjects aged: 20-56y), and from the QSM2016 challenge 3T data using different masks, unwrapping, background removal, and dipole inversion algorithms. QSM contrast was quantified using age-based iron concentrations. RESULTS: Close to air cavities, phase wraps became denser with increasing field and echo time, yielding increased values of the test functions. Compared with PItoh , PB had the highest Dice coefficient, while PG had the lowest and MM the highest percentage of voxels outside PItoh. Artifacts observed in QSM at 9.4T with MM were mitigated by stronger background filters but yielded a reduced QSM contrast. With PB, QSM contrast was greater and artifacts diminished. Similar results were obtained with challenge data, evidencing larger effects of mask close to air cavities. CONCLUSION: Automatic, phase-based masking founded on the second derivative of the sign of the wrapped phase, including cortical voxels at the brain surface, was able to mitigate artifacts and restore QSM contrast across cortical and subcortical brain regions.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem
10.
Adv Mater ; 34(27): e2202858, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35523720

RESUMO

Aiming at a large open-circuit voltage (VOC ) deficit in Cu2 ZnSn(S,Se)4 (CZTSSe) solar cells, a new and effective strategy to simultaneously regulate the back interface and restrain bulk defects of CZTSSe absorbers is developed by directly introducing a thin GeO2 layer on Mo substrates. Power conversion efficiency (power-to-efficiency) as high as 13.14% with a VOC of 547 mV is achieved for the champion device, which presents a certified efficiency of 12.8% (aperture area: 0.25667 cm2 ). Further investigation reveals that Ge bidirectional diffusion simultaneously occurs toward the CZTSSe absorber and MoSe2 layer at the back interface while being selenized. That is, some Ge element from the GeO2 diffuses into the CZTSSe absorber layer to afford Ge-doped absorbers, which can significantly reduce the defect density and band tailing, and facilitate quasi-Fermi level split by relatively higher hole concentration. Meanwhile, a small amount of Ge element also participates in the formation of MoSe2 at the back interface, thus enhancing the work function of MoSe2 and effectively separating photoinduced carriers. This work highlights the synergistic effect of Ge element toward the bulk absorber and the back interface and also provides an easy-handling way to achieve high-performance CZTSSe solar cells.

11.
Int J Neural Syst ; 32(6): 2250017, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35306966

RESUMO

Automatic epilepsy detection is of great significance for the diagnosis and treatment of patients. Most detection methods are based on patient-specific models and have achieved good results. However, in practice, new patients do not have their own previous EEG data and therefore cannot be initially diagnosed. If the EEG data of other patients can be used to achieve cross-patient detection, and cross-patient and patient-specific experiments can be combined at the same time, this method will be more widely used. In this work, an EEG classification model based on a self-organizing fuzzy logic (SOF) classifier is proposed for both cross-patient and patient-specific seizure detection. After preprocessing, the features of the original EEG signal are extracted and sent to the SOF classifier. This classification model is free from predefined parameters or a prior assumption regarding the EEG data generation model and only stores the key meta-parameters in memory. Therefore, it is very suitable for large-scale EEG signals in cross-patient detection. Selecting different granularity and classification distance in two different experiments after post-processing will achieve the best results. Experiments were conducted using a long-term continuous scalp EEG database and the [Formula: see text]-mean of cross-patient and patient-specific detection reached 83.35% and 92.04%, respectively. A comparison with other methods shows that there is greater performance and generalizability with this method.


Assuntos
Lógica Fuzzy , Processamento de Sinais Assistido por Computador , Algoritmos , Eletroencefalografia/métodos , Humanos , Convulsões/diagnóstico
12.
Dalton Trans ; 51(12): 4903-4908, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35262155

RESUMO

A Ga-enriched ternary alkali-metal sulfide Na4Ga8S14 has been synthesized by a high temperature solid-state reaction. It crystallizes in the centrosymmetric Pbca (no. 61) space group with cell parameters a = 13.5260(4) Å, b = 11.4979(3) Å, c = 29.9592(9) Å, and Z = 8, and exhibits a three-dimensional (3D) network structure constructed from unique [Ga12S42] 12-membered rings, one-dimensional ∞[Ga4S11] chains, individual [GaS4] units and Na+ ions. The experimental band gap of Na4Ga8S14 was measured as ∼3.57 eV. Theoretical calculations indicate that the title compound is a direct band gap compound and the band gap is mainly determined by [GaS4] units. Meanwhile, statistical analysis shows that the atomic ratio N (N = AIAII/Ga, where AI = alkali-metal, AII = alkaline earth-metal) can be used to regulate the connection of [GaS4] units from zero-dimensional (0D) isolated groups, one-dimensional (1D) chains, and two-dimensional (2D) layers to 3D frameworks in Ga-containing alkali- and/or alkaline earth-metal chalcogenides. The results enrich the diversity of alkali-metal sulfides and give an insight into the structural regulation of alkali- and/or alkaline earth-metal chalcogenides.

13.
Magn Reson Med ; 87(2): 1074-1092, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34632626

RESUMO

PURPOSE: To test an integrated "AC/DC" array approach at 7T, where B0 inhomogeneity poses an obstacle for functional imaging, diffusion-weighted MRI, MR spectroscopy, and other applications. METHODS: A close-fitting 7T 31-channel (31-ch) brain array was constructed and tested using combined Rx and ΔB0 shim channels driven by a set of rapidly switchable current amplifiers. The coil was compared to a shape-matched 31-ch reference receive-only array for RF safety, signal-to-noise ratio (SNR), and inter-element noise correlation. We characterize the coil array's ability to provide global and dynamic (slice-optimized) shimming using ΔB0 field maps and echo planar imaging (EPI) acquisitions. RESULTS: The SNR and average noise correlation were similar to the 31-ch reference array. Global and slice-optimized shimming provide 11% and 40% improvements respectively compared to baseline second-order spherical harmonic shimming. Birdcage transmit coil efficiency was similar for the reference and AC/DC array setups. CONCLUSION: Adding ΔB0 shim capability to a 31-ch 7T receive array can significantly boost 7T brain B0 homogeneity without sacrificing the array's rdiofrequency performance, potentially improving ultra-high field neuroimaging applications that are vulnerable to off-resonance effects.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
14.
ACS Appl Mater Interfaces ; 13(46): 55243-55253, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34751555

RESUMO

The post-heating treatment of the CZTSSe/CdS heterojunction can enhance the interfacial properties of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. In this regard, a two-step annealing method was developed to enhance the heterojunction quality for the first time. That is, a low-temperature (90 °C) process was introduced before the high-temperature treatment, and 12.3% efficiency of CZTSSe solar cells was achieved. Further investigation revealed that the CZTSSe/CdS heterojunction band alignment with a smaller spike barrier can be realized by the two-step annealing treatment, which assisted in carrier transportation and reduced the charge recombination loss, thus enhancing the open-circuit voltage (VOC) and fill factor (FF) of the devices. In addition, the two-step annealing could effectively avoid the disadvantages of direct high-temperature treatment (such as more pinholes on CdS films and excess element diffusion), improve the CdS crystallization, and decrease the defect densities within the device, especially interfacial defects. This work provides an effective method to improve the CZTSSe/CdS heterojunction properties for efficient kesterite solar cells.

15.
Chem Commun (Camb) ; 57(52): 6440-6443, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34096565

RESUMO

Ba2BS3Cl and Ba5B2S8Cl2 have been synthesized by using PbCl2 as the flux and source of halogen. The two compounds show 3D network structures built by isolated [BS3] units with different Ba-S-Cl groups. This work enriches the structural diversity of boron chemistry and provides an insight into the synthesis of thioborates.

16.
Magn Reson Med ; 83(2): 749-764, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31483527

RESUMO

PURPOSE: A multi-coil shim setup is designed and optimized for human brain shimming. Here, the size and position of a set of square coils are optimized to improve the shim performance without increasing the number of local coils. Utilizing such a setup is especially beneficial at ultrahigh fields where B0 inhomogeneity in the human brain is more severe. METHODS: The optimization started with a symmetric arrangement of 32 independent coils. Three parameters per coil were optimized in parallel, including angular and axial positions on a cylinder surface and size of the coil, which were constrained by cylinder size, construction consideration, and amplifiers specifications. B0 maps were acquired at 9.4T in 8 healthy volunteers for use as training data. The global and dynamic shimming performance of the optimized multi-coil were compared in simulations and measurements to a symmetric design and to the scanner's second-order shim setup, respectively. RESULTS: The optimized multi-coil performs better by 14.7% based on standard deviation (SD) improvement with constrained global shimming in comparison to the symmetric positioning of the coils. Global shimming performance was comparable with a symmetric 65-channel multi-coil and full fifth-order spherical harmonic shim coils. On average, an SD of 48.4 and 31.9 Hz was achieved for in vivo measurements after global and dynamic slice-wise shimming, respectively. CONCLUSIONS: An optimized multi-coil shim setup was designed and constructed for human whole-brain shimming. Similar performance of the multi-coils with many channels can be achieved with a fewer number of channels when the coils are optimally arranged around the target.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Artefatos , Mapeamento Encefálico/métodos , Simulação por Computador , Imagem Ecoplanar , Desenho de Equipamento , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Adulto Jovem
17.
Magn Reson Med ; 83(4): 1499-1511, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31631391

RESUMO

PURPOSE: We designed and implemented an orthogonal shim array consisting of shim coils with their planes perpendicular to the planes of neighboring RF coils. This shim coil improves the magnetic field homogeneity by minimizing the interference to RF coils. METHODS: Using realistic off-resonance maps of the human brain, we first evaluated the performance of shim coils in different orientations. Based on simulations, we developed a 7-channel orthogonal shim array, whose coil plan was perpendicular to neighboring RF coils, at the forehead. A programmable open-source current driver supplied shim currents. RESULTS: The 7-channel orthogonal shim array caused only marginal SNR loss to the integrated 32-channel RF-shim array. The 7-channel orthogonal shim array itself improved the magnetic field homogeneity by 30% in slice-optimized shimming, comparable to the baseline shimming offered by the scanner's 2nd order spherical harmonic shimming. CONCLUSION: Orthogonal shim coils can improve the field homogeneity while maintaining high image SNR.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem , Imagens de Fantasmas
18.
Sci Bull (Beijing) ; 65(9): 738-746, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659107

RESUMO

Aqueous precursors provide an alluring approach for low-cost and environmentally friendly production of earth-abundant Cu2ZnSn(S, Se)4 (CZTSSe) solar cells. The key is to find an appropriate molecular agent to prepare a stable solution and optimize the coordination structure to facilitate the subsequent crystallization process. Herein, we introduce thioglycolic acid (TGA), which possesses strong coordination (SH) and hydrophilic (COOH) groups, as the agent and use deprotonation to regulate the coordination competition within the aqueous solution. Ultimately, metal cations are adequately coordinated with thiolate anions, and carboxylate anions are released to become hydrated to form an ultrastable aqueous solution. These factors have contributed to achieving CZTSSe solar cells with an efficiency as high as 12.3% (a certified efficiency of 12.0%) and providing an extremely wide time window for precursor storage and usage. This work represents significant progress in the non-toxic solution fabrication of CZTSSe solar cells and holds great potential for the development of CZTSSe and other metal sulfide solar cells.

19.
Biomed Res Int ; 2015: 965386, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579544

RESUMO

A new series of D-π-A type imidazole derivatives have been synthesized and characterized. Two corresponding imidazolium salts (iodine and hexafluorophosphate) were prepared from the imidazole compound. Their electron-withdrawing ability can be largely tunable by salt formation reaction or ion exchange. UV-vis absorption and single-photon fluorescence spectra have been systematically investigated in different solvents. The two-photon cross sections (δ 2PA) of the imidazole derivatives are measured by two-photon excited fluorescence (2PEF) method. Compared with those of T-1 (107 GM) and T-3 (96 GM), T-2 (imidazolium iodine salt) has a large two-photon absorption (2PA) cross section value of 276 GM. Furthermore, the cytotoxicity and applications in bioimaging for the imidazole derivatives were carried out. The results showed that T-1 can be used as a lysosomal tracker with high stability and water solubility within pHs of 4-6, while T-2 and T-3 can be used as probes for cell cytoplasm.


Assuntos
Meios de Contraste/síntese química , Aumento da Imagem/métodos , Imidazóis/síntese química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Frações Subcelulares/ultraestrutura , Absorção de Radiação , Células Hep G2 , Humanos , Fótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 11): m382-3, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484786

RESUMO

The crystal structure of the title compound, [ZnCl2(C15H11N3)], was redetermined based on modern CCD data. In comparison with the previous determination from photographic film data [Corbridge & Cox (1956 ▶). J. Chem. Soc. 159, 594-603; Einstein & Penfold (1966 ▶). Acta Cryst. 20, 924-926], all non-H atoms were refined with anisotropic displacement parameters, leading to a much higher precision in terms of bond lengths and angles [e.g. Zn-Cl = 2.2684 (8) and 2.2883 (11) compared to 2.25 (1) and 2.27 (1) Å]. In the title mol-ecule, the Zn(II) atom is five-coordinated in a distorted square-pyramidal mode by two Cl atoms and by the three N atoms from the 2,2':6',2''-terpyridine ligand. The latter is not planar and shows dihedral angles between the least-squares planes of the central pyridine ring and the terminal rings of 3.18 (8) and 6.36 (9)°. The mol-ecules in the crystal structure pack with π-π inter-actions [centroid-centroid distance = 3.655 (2) Å] between pyridine rings of neighbouring terpyridine moieties. These, together with inter-molecular C-H⋯Cl inter-actions, stablize the three-dimensional structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...